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Virtual Reality Video Compression

Overview of VR and its Applications

Virtual reality (VR) is a virtual, or simulated, experience that attempts to take a user out
of their environment and transplant them into a virtual environment. Much like traditional
video, VR usually involves the sense of sight and sound, however many VR experiences also
let the user interact with the simulated environment through movement and touch. Most VR
today involves the user wearing some type of device over their eyes. This device is usually a
head-mounted display that is tethered to a powerful desktop PC or allows for a smartphone
to be placed within the head-mount so that the smartphone screen can act as the display.
The main theme is that the user can no longer see anything around them in the real world
so that their brain can be tricked into believing this virtual environment is real.

Figure 1: Virtual reality head-mounted displays (wsj.com)

Some of the main purposes of VR today are video games, teaching and learning, remote
work, entertainment, and communication. Video games are what is often associated with
VR and is an obvious medium for the technology to be explored. Gaming has always been a
form of providing the user with a virtual experience where they can escape the restrictions
of reality so it’s a natural fit for VR.

The field of teaching and learning through VR has a lot of potential and will likely
play a major role in the way that future generations learn. VR can provide the student
with experiences that they would otherwise not be able to have access to due to financial
reasons, risk, or the difficulty of creating the situation in the real world. Flying a plane
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can be dangerous and very expensive, but by practicing in a flight simulator, a student or
experienced pilot can gain familiarity for a lot less risk and cost. A surgeon can practice
different surgery techniques within a VR environment before having to perform an operation
on a live patient. Members of the military can simulate war zone situations from the safety of
a virtual environment. Even general studies for people of all ages can be augmented and made
more immersive and captivating by providing the lesson within one of these environments.

Figure 2: Boeing 737 VR flight simulator (virginexperiencedays.co.uk)

Remote work is one of the lesser considered applications of VR, but has a lot of potential.
Imagine that you have some heavy machinery that needs to be controlled by a highly skilled
worker to perform a task. This worker may be hundreds or thousands of miles away so it
will take time and money to bring them to the machinery. With VR, instead of traveling to
the site, the worker could control the machinery and perform the task from an office or even
their own home. This introduces a latency issue so it’s not a foolproof option, but it’s very
interesting and worth further study.

Much like video games, movies and television have long been a way for a viewer to
transport themselves to another reality. VR can help make that experience more immersive
and real. VR could also be used to allow a viewer to feel like they are at a live event from
the comfort of their own home. The viewer could walk into their living room, put on their
VR headset and immediately feel like they are at a live concert. This means that a band
or event could reach much larger audiences due to no longer being limited by the amount
of space in the venue. It would also allow for people to experience the event from anywhere
on the planet. The viewer could also choose any “ticket” in the venue based on where they
want to view the event from. You could have millions of viewers all sitting in the best seat
in the house.
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Figure 3: Prototyped in 1956 and patented in 1962, the Sensorama was one of the earliest
virtual reality machines. It included full colour 3d video, audio, vibrations, smell, and even
wind (https://virtualspeech.com/blog/history-of-vr)

The telephone and the internet were massive advances with regards to how humans can
communicate with each other. VR is poised to be the next leap. By providing avatars for
each user and an environment for the avatars to interact with each other, VR can provide
a much more immersive and “real” communication experience. This could be a video con-
ference for work, futuristic online dating, a games night with friends, or just general social
interaction. Many VR developers are working on technologies to allow for a translation
of facial expressions or body language onto the avatars so that people can better express
themselves.

The potential of VR is enormous and could change the world in a lot of very meaning-
ful ways. The main challenges with making this a reality are computing power, internet
bandwidth, and developers creating these environments. Computing power and internet
bandwidth are physical and financial limitations that aren’t very easy to solve. However, we
can limit the amount of bandwidth required if we can make the files smaller and we can limit
the amount of computing power required if we use or design more efficient coding algorithms.
This is where compression comes in.

Why Compression is Important

Before discussing compression techniques, it is important to understand why compression
is important. VR video compression uses much the same technology and techniques as 360
degree video streaming, which has considerably more publicly available research. Therefore,
360 video will be the major focus of this paper. Examples of 360 video streaming with tight
constraints are videoconferencing and live event streaming; the user experience relies heavily
on being able to receive the data fast enough to keep up with realtime. Streaming a live
event could get away with a large buffer as most user experiences wouldn’t be affected by
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Figure 4: A VR chatroom where people from all around the world can interact with each
other (bizjournals.com)

being around 30 seconds behind realtime. However, this would just allow for bandwidth
fluctuation and would still require an average transmission rate high enough to maintain the
buffer. Videoconferencing on the other hand would suffer greatly by having a buffer of even
a couple seconds. In either case, it’s clear that we need to minimize the size of the files being
streamed.

360 degree video is different from 2D video in that instead of covering a limited plane, it
must cover the entire 360x180 degree viewing range. Because of this, the minimum resolu-
tion required for an image or video to not compromise the user experience is much higher.
Most experts consider the minimum resolution for an immersive VR experience to be 4K
(3840x1920, 3840x2048, or 4096x2048). Without modern compression techniques, streaming
this amount of data wouldn’t be possible. Fortunately, we already have very advanced, well
researched, and well tested compression and coding algorithms for 2D video.

Some of the most popular codecs today include H.264, H.265, VP9, and AV1. The
compression used in all of these codecs is considered lossy. This means that we cannot
reconstruct the original source information from the compressed data and so there will be
a degradation of quality. This is a necessary evil as lossless compression techniques have
compression ratios which are magnitudes lower than that of the lossy codecs. Fortunately, a
lot of very intelligent and clever people have been working on this topic for at least 40 years
and they’ve come up with some brilliant and effective techniques to reduce file size without
sacrificing too much in the way of video quality.

So why can’t we just use a codec like H.265 for our 360 degree videos? Well, we could and
we do, but there are some very important differences between 2D and 360 degree video that
result in the compression techniques not translating as well from one to the other. What we
really want is to be able to make modifications and additions to the current codecs so that
they can work more efficiently with 360 degree video.
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In most cases, 360 degree video frames are projected onto a 2D plane so that we can
use modern 2D codecs. This projection can introduce some important problems: geometric
distortion, redundancy, and discontinuity. Geometric distortion and redundancy occur when
the projection from a panoramic scene to a planar scene causes large deformation in the
pole area [1] [2]. This is caused by non-uniform sampling density. The proposed solutions to
this problem mainly deal with motion estimation and motion compensation. Discontinuity
occurs because 360 degree scenes are spherical which means they have no borders however
they are being mapped to a 2D plane which has borders [3]. We’d also like to be able to view
these streams on a smartphone so the decoding process can’t require too much computation.
These problems result in the current wave of codecs being suboptimal for 360 degree video
compression. What we want from a compression scheme is for there to be a high compression
ratio (new file size / original file size) while maintaining a high quality playback experience.

For the rest of the paper, we will discuss many of the proposed solutions to the issues
mentioned in the previous paragraph. Many of the concepts addressed and explored in this
paper were brought to our attention from reading [4] (“State-of-the-art in 360 video/image
processing: perception, assessment and compression”) and many of the sources that were
referenced in [4]. If you wish to explore some of the topics further, [4] would be a great place
to start.

Figure 5: Different types of projections from 360 degree video to 2D planes [4]
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Motion Estimation Adaption

Motion estimation is a compression technique that has been around for many generations
of coding algorithms. Each generation has added some complexity and further optimization,
but the general idea is that instead of encoding each frame independently as an image, we
can encode the differences between subsequent frames. More specifically with regards to
motion estimation and motion compensation, we can split the frames up into blocks and
encode how far and in what direction each block of pixels moved between frames. It is an
important step in removing or reducing temporal redundancy.

Traditional motion estimation hinges on two assumptions. Assumption 1 is that an
object in motion within a frame can be represented by block translations in the 2D plane
and its related motion vector [4]. Assumption 2 is that padding can replicate pixels near
borders in the event that motion estimation uses any samples outside of the borders. Neither
assumption 1 nor assumption 2 hold true for 360 degree video. Non-linear motion such as
rotation and zoom brought in by geometric distortion are beyond the grasp of traditional
motion estimation. Also, the variance of motion vectors is generally much harsher in 360
degree video which results in more bits being required to encode [2]. Due to 360 degree video
not having true borders, the padding mentioned in assumption 2 is not appropriate and can
lead to serious quality degradation [5].

Motion Estimation Before Projection

One thought that has been proposed and built upon by many researchers is to perform
the motion estimation within the spherical domain rather than doing it on the 2D projected
plane. We have read through several of the papers exploring this idea, but the one that makes
the most sense to us is “Spherical Coordinates Transform-Based Motion Model for Panoramic
Video Coding” by Y. Wang et al. [6]. This paper expresses the idea that capturing motion
between frames is the most important piece of compression in video. The current techniques
for encoding this motion in 2D video do not translate well to 360 degree (panoramic) video so
coming up with solutions better suited for panoramic video will have significant implications
to the future of VR.

“Thus, we propose a new motion model based on spherical coordinates transform, termed
SCTMM, for panoramic video coding. The basic assumption of SCTMM is that a block (in
the mapped video is corresponding to a portion of sphere (in the panoramic video), and
that portion of sphere has a translation in the 3D space. It then needs three parameters to
describe that 3D translation.” [6] The type of projection that is focused on in the SCTMM
paper is equirectangular projection (ERP) which is shown in Figure 5. Different projection
schemes were analyzed, but all of them suffer from the same deformation between spherical
and planar frames. The goal is to come up with a new motion system that will still be easy
to integrate into existing coding schemes.
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Figure 6: How 3D translation can deform a frame significantly with ERP [6]

Spherical coordinates transform is a fundamental geometric transform and can be written
as:

x = Rcos(g)sin(g)
y = Rsin(g)sin(f)

z = Rcos(f)

where R is radius (depth), f is latitude, and g is longitude. This allows for a simple translation
between a point in a cartesian coordinate system (x, y, z) and the same point in a spherical
coordinate system (R, f, g). The equations to convert a point on a sphere to a corresponding
point in an equirectangular projection are:

f = π(v/H)
g = 2π(u/W )

where (f, g) are still latitude and longitude, (H, W) are the height and width of the rectangle
and (u, v) are the coordinates within the rectangle. Based on these two sets of equations,
you can convert from (x, y, z) to (u, v) with the following,

u = W
2π
cos−1( x√

x2+y2
) for y > 0

u = W
2π

(W − cos−1( x√
x2+y2

)) for y ≤ 0

v = H
π
cos−1(z/R)·
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however R (depth or distance from the camera) is not known due to that information not
being captured by the camera. Fortunately, this doesn’t prove to be a big deal as in the paper
they are able to show that the value of R is not important if you can make the assumption
that the depth inside a small block of pixels is constant. This is a fair assumption to make
for small enough blocks.

Figure 7: Spherical coordinates transform (left) and the spherical coordinates transform-
based motion model (right) [6]

By implementing SCTMM into existing compression systems, the authors of this paper
were able to produce an average of 2.6% and up to 10.7% BD-rate reduction compared to a
baseline.

Padding Method Adaption

No matter which type of projection that is being used, the frames are still going from a
sphere to a plane. Unlike 2D planes, spheres are continuous and do not have borders or
boundaries. Because modern video codecs were designed and optimized for planar video,
they have techniques to deal with the boundaries. These techniques do not translate well
to spherical projections so Y. He et al. wrote the paper “Motion compensated prediction
with geometry padding for 360 video coding” as a proposal for a new way to deal with these
boundaries [3].

Padding is necessary for when a reference block for a frame is outside of the frame’s
boundary. The conventional way to handle this in modern codecs is for the reference sample
to be determined by repeating the samples at the edge of the frame boundary.
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Figure 8: Conventional repetitive padding being applied to an equirectangular projection [6]

Looking at Figure 8 and knowing that the true nature of this image is spherical, we
can reason that the left edge should naturally connect with the right edge. Therefore,
repeating the edges doesn’t make much sense when dealing with a continuous, spherical
frame. Intuitively, when determining what lies outside of the boundary, we should just start
at the opposite boundary and move inwards. This is the logic behind the geometry padding
proposed in [6]. For an equirectangular projection such as the one shown in Figure 8, it is
a fairly straightforward calculation. If we have a point (x, y) that lies outside of the ERP
frame, we will need to find a point (x’, y’) to act as the padded point. The calculation is as
follows (directly from [6]),

x < 0 or x ≥ W and 0 ≤ y < H :
x′ = x % W

y′ = y

y < 0 :
x′ = (x+ W

2
)%W

y′ = −y − 1

y ≥ H :
x′ = (x+ W

2
)%W

y′ = 2H − v − 1

where W and H are the width and height of the equirectangular projection. Comparing
Figure 8 with Figure 9, it’s easy to see how much more accurate the padding will be with
geometry padding.
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Figure 9: Same image from Figure 8, but this time it has been padded with geometry padding
[6]

If the frame is in a cube map projection rather than equirectangular, it’s not as intuitive
or easy to deduce how geometry padding should work, but the proposed padding scheme’s
benefits are equivalent no matter the projection type.

Comparing Figure 8 and Figure 9, it’s easy to see that geometry padding provides much
more meaningful frame padding. This will result in much more accurate predictions by the
coding algorithm. Predictions that are more accurate require less error or residual encodings
which means less information needs to be stored and transmitted. The tests that were
performed within the paper showed that the proposed geometry padding achieved a BD-rate
reduction of 0.3% for equirectangular projections and 1.0% for cube map projections. The
authors note that the gains were more significant for sequences that involved more movement
(between 1.9% and 4.3%).

Sampling Density Modifications

A naive and basic approach to encoding an image or video frame is to treat each pixel
independently and equally. This would however, result in massive file sizes and a ton of
redundant information. Modern codecs and compression algorithms employ many clever
tricks to reduce the amount of redundant information and therefore file sizes. Some of these
tricks leverage the fact that a human is generally the target audience for the image or video
and therefore the limits and shortcomings of human perception can be exploited to drop
information without affecting the human experience.

This isn’t always appropriate, for example if the image or video is meant to be analyzed
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by a machine learning algorithm such as Computer Vision, the algorithm may be able to
utilize some of the information that wouldn’t be important to a human. The panoramic
or 360 degree video that we are discussing in this paper is generally created for human
consumption so the next few topics will be exploring ways to discard information from a 360
degree video without affecting the human viewing experience too drastically.

Downsampling and Smoothing

Downsampling is the process of reducing the sampling rate of a given signal. Simply put,
in the context of images and video frames, downsampling can be thought of as reducing the
resolution for a particular region of the frame. Two of the main reasons that this is done are
if that region is not very important to the overall image or if that region doesn’t have much
detail. In these cases, these regions can be downsampled without the overall quality of the
image or frame being affected too much.

Figure 10: Top (black) and bottom (dark blue) of a frame are given much more resolution in
the equirectangular 2D space (top image) than they require when rendered in the 360 degree
video viewer (bottom image) [7]
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Many of the compression techniques in modern codecs utilize downsampling in some
capacity, but none of them are specific to 360 degree video. One intuitive idea for employing
downsampling for 360 degree video is to vary the sampling rate of the video regions based
on the region’s latitude. The user will rarely be looking straight up or straight down while
viewing the video and if they are, the content of the video in those regions probably isn’t
very important to the overall experience. Because of this, it’s natural to assume that we
could have lower sampling rates for those regions. This would result in a blurrier, smoother,
and/or less detailed image for those regions, however the user experience likely wouldn’t be
affected much and this could result in a significant reduction in bitrate.

M. Budagavi et al. in [7] present a “region adaptive video smoothing technique that
exploits the unique characteristics of 360 degrees video to provide up to 20% bitrate savings
with minimal perceptual quality degradation while requiring no modifications to the video
decoder.” This paper focuses less on the fact that the top and bottom of a frame are less
important and more on the fact that due to equirectangular mapping, the top and bottom
of a frame are given a disproportionate amount of the 2D resolution. Figure 10 is a good
visual representation of this fact. Notice how in the bottom image (how the image is dis-
played by the VR display device) the black and dark blue regions are given a fairly similar
amount of screen space as the other colour regions. However, in the top image (the image
in equirectangular projection) the black and dark blue regions are given significantly more
screen space than any other colour regions.

The technique used to apply the downsampling within [7] is Gaussian smoothing. A
Gaussian smoothing filter is applied to the image at varying levels of smoothing based on
the latitude (the closer to the top or bottom of the frame, the more smoothing that is ap-
plied). The authors note that for natural video sequences, the video quality starts to become
noticeably degraded at around 20% smoothing whereas for computer generated images, the
degradation becomes noticeable around 15%.

Adaptive Quantization and Frame Rate Adaption

M. Tang et al. in the paper “Optimized video coding for omnidirectional videos” [8]
proposed two different techniques for reducing the bitrate in 360 degree videos. One tech-
nique (adaptive quantization) is for equirectangular projections and the other (frame rate
adaptation) is for cube map projections.

The adaptive quantization technique proposed stems from the same logic as the down-
sampling in the previous section. Because the top and bottom of each frame are dispropor-
tionately represented in the equirectangular projection, we do not need to spend as many bits
encoding those regions. Their proposed formulas, in simplified form, involve providing finer
grained quantization to regions closer to the frame equator and less fine grained quantization
to the regions closer to the top and bottom of the frame.

The intuition behind the frame rate adaptation is that sequences with less movement can
be given a lower frame rate without the viewer being able to tell the difference. This works
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well with cube map projections because each cube face can be encoded with a separate frame
rate. This means that even if there is significant movement within an entire frame, some
of the cube faces may not see much movement. The cube faces with less or no movement
can be encoded with a lower frame rate which will lower the overall bitrate. By allowing
for specific faces within the cube map to have adaptively lower frame rates, those faces
can either contribute to a lower overall bitrate or maintain their bitrate and benefit from
increased visual quality. This does not work well with equirectangular projections due to the
entire frame being “connected” so if any part of the frame within a sequence had significant
movement, you couldn’t lower the frame rate of the rest of the frame without also lowering
the frame rate of the region with the movement.

“Experiments implementing the proposed algorithms in the open source x265 encoder
prove that the proposed algorithms can help save 14.69% and 13.01% of the bitrates for the
cube map and equirectangular projected videos respectively while maintaining the visual
quality after the compression. Furthermore, the proposed algorithms are compatible with
and therefore can collaborate with the currently used adaptive spatial resolution scheme in
the real-world VR processing system for further bitrate reduction.” [8]

Spherical Wavelets

There is an additional technique we can apply to the spherical projections discussed above.
All video data before being sent to the video feed can be represented as sums of functions,
which can be viewed as the ”frequencies” of the data. The functions are combined and
compressed in a (usually) lossy fashion, then sent through the feed to display graphical
elements to the user. In the case of 360o video, functions created on the 2D domain are
projected onto a 3D sphere. A much more efficient way to represent functions are utilizing
wavelets.

Figure 11: Wavelets on a Sphere [9]

Wavelets essentially cut a function into different frequency components, which are scaled
to match a certain resolution. It oscillates with a positive amplitude, and can be visualized
as a ”brief oscillation”. Consequently, wavelets require a very few amount of coefficients
to represent data. This means that wavelets are very compressible, much more so than
their originating functions after conversion. ”They offer both theoretical characterization of
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smoothness, insights into the structure of functions and operators, and practical numerical
tools which lead to faster computational algorithms”. [9]

What makes wavelets ideal here is that computer graphical data very accurately trans-
lates into wavelets. Specifically, functions representing surface edges, volume illumination,
shadows, lighting, etc are efficiently represented by wavelets. For the purposes of video com-
pression calculations for interactive mediums (such as VR), these elements make the bulk of
the computations.

For 360o or panoramic video, as discussed earlier, 2D video functions are projected onto a
3D spherical plane. If we translate said functions to wavelets, we need to be able to efficiently
do so. Luckily, wavelets are actually much more efficient to project as well. Functions must
be bounded to finite domains before projection is possible; video graphical data cannot be
represented by infinite functions. Wavelets are, more often than not, incredibly easy to bound
as opposed to their native functions since the construction of a wavelet involves restricting
the domain.

Construction of a wavelet also allows further scaling reductions if quality can be reduced.
This can help 360o video for VR attain target framerates if video compression takes too
long. Typically, quality on objects not in center focus or close by can reduce their wavelet
functions (and thus graphical quality) efficiently if needed. Figure 12 shows how a simple
function projected on a sphere can be scaled multiple times using wavelets.

Figure 12: A function projected on a sphere (top left) with multiple wavelet scalings

Still Images

As discussed previously, 360o video for VR demands very high resolutions, many multi-
ples more than regular video. Because of this, low-end devices with VR support, such as
smartphones, may not have the necessary processing power to achieve this. Typically smart-
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phones already reduce video quality and tracking ability in order to attain target framerates.
A recent solution to this is to incorporate still images into video compression.

The approach is to only process/render the focus of the frame as a video, and keep the
rest as still images. The idea is that, typically, users in VR (and real life as well) turn
their head to look instead of just move their eyes, meaning that moving objects of interest
are at midheight of the frame. If more computing power is needed, the video can be split
horizontally into three sections. The middle section would be rendered as video, the top and
bottom would stay as still images. Figure 13 shows an example of how a video could be
sectioned.

Figure 13: A frame where only the middle section is processed as video (headjack.io)

Note that this technique is not a video compression technique; it is done before compres-
sion as a way to lessen the load, resulting in higher possible framerates and resolutions. This
is very noticeable to users if they specifically look for it (ie. up or down), but by processing
less than half the frame, compression times drastically decrease without affecting apparent
resolution. Due to this, still images are an efficient fix for low-end VR such as 360o video
viewing, chatrooms, conferences, etc.

Asynchronous Reprojection

Head motion responsiveness and framerate are by far the most imperative aspects of VR
to keep stable for usability. Sometimes, even with usage of techniques listed above, complex
graphical frames are not compressed in time for the video feed. When this occurs, high-end
VR headsets have the necessary technology for a backup method.

Asynchronous Reprojection is an additional form of motion estimation developed specif-
ically for high-end VR headsets. It takes the previously rendered frames, and uses motion
info inputted from the headset sensors to warp said previous frames into an interpolated next
frame. This method differs from the previously discussed motion estimation, which predicts
based on motion specifically detected within the previous frames. Reprojection utilizes the
headset hardware to track current motion force vectors and adds it to the previous frame.
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Figure 14: Ideal frame sequence with no
frame drops

Figure 15: Synthesized frame extends second
frame with warp if third frame unready

The reason it is labelled ”Asynchronous” is because this operation is performed com-
pletely independent of video rendering, or in parallel to video compression. This reprojected
frame is displayed without delay if the ”real” frame is not rendered after compression in time
for the display. This allows high-end VR to always maintain target framerates, resolutions
and quick response times, regardless of rendering and compression complexity. The repro-
jected frames are usually indistinguishable from the regular frames to the user if they are
interlaced at a reasonably fraction. Figures 14 and 15 above are a video timeline showing
how an unready frame is dropped in place of the interpolated or ”warped” frame.

Conclusion

The video compression techniques covered in this report are some of the major methods
used for Virtual Reality. These have come together to allow current VR to be 100% ready for
consumer use by attaining satisfactory framerates and resolutions. The only limiting factor
for the general public to experience immersive virtual environments is the need for a powerful
PC and headset. Future developments and new, more efficient compression techniques will
allow for less powerful (and more affordable) hardware to be able to run VR on a potentially
more impressive scale than today.
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Team Member Contributions

Both team members contributed to the topic, report, and the presentation. We both searched for
research papers and compression techniques; we were in constant contact with eachother whenever
we found something deemed useful for the report.

To be more specific on contributions, Patrick created and wrote much of the report, Nicolaus finished
and formatted the report. Patrick created and voiceovered half the slides for the presentation,
Nicolaus finished the slides and formatted the video.

However, again, we both researched VR video compression, wrote sections in the report, and made
slides for the presentation. Both team members contributed to each part of the project.
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